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We prove norm inequalities with exponential weights for the Riemann�Liouville
fractional integral. As an application, we show for certain functions that their
Laguerre expansions will converge in the L p norm for some p outside the standard
range of (4�3, 4). � 1997 Academic Press

1. INTRODUCTION

The Riemann�Liouville fractional integral with origin 0 is defined:

fa(x)=
1

1(a) |
x

0
f (t)(x&t)a&1 dt, a>0. (1.1)

In [4], Hardy and Littlewood proved that if p>1, l>1�p&1,
x&l f # L p(0, �), 0�m�a<1�p, a>0 if m=0, and q=1�(1�p+m&a), then

|
�

0
|x&(m+l ) fa|q dx�K \|

�

0
|x&l f | p dx+

q�p

, (1.2)

where K=K(a, m, l, p) only. They also showed that (1.2) does not hold in
general for other values of q.

The restriction a<1�p in (1.2) can be relaxed to a<m+1�p, as we will
see later.

Hardy and Littlewood's results sparked a great interest in the topic of norm
inequalities for fractional integrals. Most recently, this interest has led to
characterizations of weights u and w for which a fractional integral inequality

|
�

0
| fa(x)|q w(x) dx�K \|

�

0
| f (x)| p u(x) dx+

q�p
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will hold for certain values of q and p. This type of characterization usually
takes on one of the following forms: (i) to determine weights for which the
norm inequality holds if 1<p<1�a, q=1�(1�p&a); (ii) to determine
weights for which the norm inequality holds for q=p; or (iii) to charac-
terize weights using certain classes of test functions related to the weights.

For examples of these types of results, see e.g. [8] and his extensive list
of references. We note that while characterizations of the type (iii) are
interesting, it is not necessarily easier to verify the characterization for a
given weight than it is to prove the norm inequality directly.

In this paper we investigate fractional integral inequalities for ``Laguerre''
weights. For given values of p, we determine all values of q for which the
inequality will hold and give examples to show that our range is best
possible. We note that our weights are not in the general weight classes
Ap, q as discussed in e.g. [10]. Our interest in these weights is based on
their applications to Laguerre expansions.

More specifically, we prove that if a, b>0, p>1, m�0, l>1�p&1,
x&le&bx f # L p(0, �), then

|
�

0
|x&(m+l )e&bx fa|q dx�K \|

�

0
|x&le&bx f | p dx+

q�p

, (1.3)

where K=K(a, b, q, p, l, m) only, is true for m=0 if

0<a<
1
p

and p�q�
1

1�p&a
, (1.4a)

a=
1
p

and p�q<�, (1.4b)

or

a>
1
p

and p�q��; (1.4c)

and for m>0 if

0<a<m and
1

1�p+m
<q<

1
1�p+m&a

, (1.5a)

m�a<m+
1
p

and
1

1�p+m
<q�

1
1�p+m&a

, (1.5b)

or

a�m+
1
p

and
1

1�p+m
<q��. (1.5c)
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We give examples to show that (1.3) is not generally true for q outside
the intervals above.

Note that

|
�

0
|x&(m+l)e&bx fa|q dx�|

�

0
|x&(m+l )(e&bt f )a| q dx (1.6)

so that the case q=1�(1�p+m&a), 0�m�a<1�p in (1.3) follows from
(1.2) applied to the function e&bxf.

We will apply (1.3) to mean convergence of Laguerre expansions.
For *>&1 the Laguerre polynomials of index * are defined to be

the unique polynomials L*
k(x), k=0, 1, ... which satisfy the orthogonality

relation

|
�

0
L*

k(x) L*
j (x) e&xx* dx=

1(k+*+1)
k !

$k, j , (1.7)

and the requirement that each L*
k is of exact degree k with coefficient of xk

being (&1)k�k !.
If x*�2e&x�2 f # L p(0, �), the n th partial sum of its Laguerre expansion of

index * is defined by

S *
n(x)= :

n

k=0

ak L*
k(x), (1.8)

where the Laguerre coefficients are given by

ak=
k !

1(k+*+1) |
�

0
f (x) L*

k(x) x*e&x dx. (1.9)

Then a famous theorem of Askey and Wainger [1] says that if 4
3<p<4,

then

&x*�2e&x�2(S *
n&f )& p � 0 as n � �. (1.10)

They also show that (1.10) is not generally true for 1�p� 4
3 and p�4.

The connection between Laguerre polynomials and fractional integration
is given by the formula:

For ;>&1, a>0 [2]:

(t ;L;
k)a (x)=

1(;+k+1)
1(a+;+k+1)

xa+;La+;
k (x). (1.11)
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Notice that

1(;+k+1)
1(a+;+k+1)

=O(k&a), k � �, (1.12)

so that if a function f has a Laguerre expansion of index ;, and we consider
the function g(x)=x&(a+;)(t ; f )a (x), then, because the coefficients are
affected in a favorable way, the expansion for g (of order a+;) should in
some sense behave better than the expansion for f (of order ;).

Our fractional integral inequalities interpret this phenomena in the
context of mean convergence. We show that if *>max(&1, &2�p$), 1�p+
1�p$=1, 4

3<p<4, 0<a<*+2�p$, if also

x(a&*)�2e&x�2(t* f )(a)(x) # L p(0, �), (1.13)

where (t* f )(a)(x) is the a th fractional derivative of x*f, then there exist
coefficients c0 , c1 , ... so that

"e&x�2x*�2 \ :
n

k=0

ckL*
k& f +"q

� 0 as n � � (1.14)

whenever

0<a<
2
p

and
1

1
p

+
a
2

<q�
1

1
p

&
a
2

; (1.15a)

or

a�
2
p

and
1

1
p

+
a
2

<q��. (1.15b)

If *>&2�q$, 1�q$+1�q=1, we show that the sum in (1.14) coincides with
S *

n defined in (1.8).
As an example, we will analyze the mean convergence of the Laguerre

expansions of f (x)=x&.
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2. PRELIMINARIES

In this section we prove a lemma on which our proof of (1.3) is based.
We will need the left handed Hardy�Littlewood maximal function

Mg(x)= sup
0<h�x

1
h |

x

x&h
| g(t)| dt (2.1)

and the incomplete gamma function

#(a, x)=|
x

0
ta&1e&t dt, a>0. (2.2)

We note for future reference that #(a, x) is continuous, #(a, x)>0 for all
x>0 and

lim
x � 0+

x&a#(a, x)=
1
a

, (2.3a)

lim
x � �

#(a, x)=1(a). (2.3b)

For notational simplicity, define

Ga, b(x)=b&a#(a, bx)=|
x

0
ta&1e&bt dt. (2.4)

We will use & } & p to denote the L p(0, �) norm.

Lemma 2.1. If b>0, p>1, 0�%�1, a>%�p, g # L p(0, �) and x�0 we
have

e&bx |
x

0
| g(t)| ebt(x&t)a&1 dt�K &g&%

p (Mg(x))1&% Ga&%�p, b(x), (2.5)

where K=K(a, b, %, p) only.

Proof. We may assume 0<Mg(x)<�, g�0. Define

G(t)=|
t

0
g(x&u) du. (2.6)
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Then clearly G(t) is majorized by both tMg(x) and t1�p$ &g& p so that for
0�%�1 we have

G(t)�(tMg(x))1&% (t1�p$ &g& p)%=t1&%�p &g&%
p (Mg(x))1&%, (2.7)

where 1�p+1�p$=1.
Writing w(t)=e&btta&1, we have

e&bx |
x

0
g(t) ebt(x&t)a&1 dt

=|
x

0
g(x&t) w(t) dt

=G(x)w(x)&|
x

0
G(t) w$(t) dt

�&g&%
p (Mg(x))1&% \x1&%�pw(x)+|

x

0
t1&%�p |w$(t)| dt+ . (2.8)

From (2.4), it is easy to see that

x1&%�pw(x)=xa&%�pe&bx�\a&
%
p+ Ga&%�p, b(x). (2.9)

Furthermore, since w$(t)=w(t)(a&1&bt)�t we have

|
x

0
t1&%�p |w$(t)| dt�|a&1| |

x

0
t&%�pw(t) dt+b |

x

0
t1&%�pw(t) dt

=|a&1| Ga&%�p, b(x)+bG1+a&%�p, b(x)

�KGa&%�p, b(x), (2.10)

where the last inequality follows from (2.3a), (2.3b), and the remarks
preceding those equations. Now, combining (2.9) and (2.10) with (2.8)
completes the proof.

The following related formula is given in [5] for p>1, 0<a<1�p,

fa(x)�K & f & pa
p (M f (x))1&pa, (2.11)
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where K=K(a, p) only. It follows that for g�0, b>0, p>1, m�0 and
m�a<m+1�p, a>0 if m=0, K=K(a, b, p, m),

e&bx |
x

0
g(t) ebt(x&t)a&1 dt

�Kxmga&m(x)�Kxm &g& p(a&m)
p (Mg(x))1&p(a&m), (2.12)

which for m=0 extends (2.5) to %=pa.

3. WEIGHTED INEQUALITIES

In applying equations (2.5) and (2.12) we will use the norm inequality

&Mg& p�K &g& p , p>1, (3.1)

where K=K( p) only (see e.g. [4, Thm. 398]), Ho� lder's inequality,

| | fg|�& f & p &g&p$ ,
1
p

+
1
p$

=1, (3.2)

and the limits (2.3a) and (2.3b).
We will first prove some preliminary versions of (1.3).

Theorem 3.1. If p>1, a, b>0 and e&bxf # L p(0, �), then

&e&bx fa&q�K &e&bxf & p , (3.3)

where K=K(a, b, q, p) only, is true whenever

0<a<
1
p

and p�q�
1

1�p&a
, (3.4a)

a=
1
p

and p�q<�, (3.4b)

or

a>
1
p

and p�q��. (3.4c)

Proof. We can assume f �0. Let g(x)=e&bxf (x).
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Assume first that 0<a<1�p and p�q<1�(1�p&a) or that a�1�p and
p�q<�. Then a>1�p&1�q, so by Lemma 2.1 with %=1&p�q we have

e&bxfa(x)=e&bx(ebtg)a (x)

�K &g&1&p�q
p (Mg(x)) p�q Ga+1�q&1�p, b(x). (3.5)

Therefore we obtain

|
�

0
(e&bxfa)q dx�K &g&q& p

p &Ga+1�q&1�p, b&q
� |

�

0
(Mg) p dx

�K &g&q
p=K &e&bxf &q

p . (3.6)

If instead, we have a>1�p, q=�, we have by Lemma 2.1 with %=1,

e&bx fa(x)�K &g& p Ga&1�p, b(x) (3.7)

so that

&e&bx fa&��K &g& p &Ga&1�p, b&�=K &e&bxf & p . (3.8)

Finally, the case 0<a<1�p, q=1�(1�p&a) follows from (1.2) and (1.6).

Theorem 3.2. If p>1, a, b>0, m>0 and e&bxf # L p(0, �) then

&x&me&bx fa&q�K &e&bxf & p , (3.9)

where K=K(a, b, m, p, q) only, is true if

0<a<m and
1

1�p+m
<q<

1
1�p+m&a

, (3.10a)

m�a<m+
1
p

and
1

1�p+m
<q�

1
1�p+m&a

, (3.10b)

or

a�m+
1
p

and
1

1�p+m
<q��. (3.10c)

Proof. We can assume f �0. As in the previous theorem we let g(x)=
e&bx f (x).

We first look for values of q<p for which (3.9) is true. Let r=p�q.
Let r$ be its conjugate exponent: r$=p�( p&q) if p<�, r$=1 if p=�.
By Lemma 2.1 with %=0 we have

e&bx fa(x)�KMg(x) Ga, b(x) (3.11)
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so that

|
�

0
(x&me&bx fa(x))q dx�K |

�

0
(x&mMg(x) Ga, b(x))q dx

�K &(x&mGa, b)q&r$ &(Mg)q&r

=K &Mg&q
p

�K &g&q
p

=K &e&bx f &q
p (3.12)

provided that (i) (a&m) qr$>&1 and (ii) &mqr$<&1. Simplifying, we
see that (i) holds if and only if either a&m�1�p or both a&m<1�p and
q<1�(1�p+m&a). Also, (ii) holds if and only if q>1�(1�p+m). (If p=�
we interpret 1��=0.) This proves (3.9) if

0<a<m+
1
p

and
1

1�p+m
<q<min \ p,

1
1�p+m&a+ (3.13a)

or

a�m+
1
p

and
1

1�p+m
<q<p. (3.13b)

Notice that a<m if and only if 1�(1�p+m&a)<p, so that (3.13a) and
(3.13b) can be rewritten

0<a<m and
1

1�p+m
<q<

1
1�p+m&a

(3.14a)

or

a�m and
1

1�p+m
<q<p. (3.14b)

Therefore, (3.9) is proved under condition (3.10a).
If m�a<m+1�p, (3.9) under condition (3.10b) follows from (2.12) and

(3.14b) using the Riesz�Thorin interpolation theorem (see e.g. [9]).
Finally if a�m+1�p, we have from Lemma 2.1 with %=1

e&bx fa(x)�K &g& p Ga&1�p, b(x), (3.15)

so that

&x&me&bx fa&��K &g& p &x&mGa&1�p, b&�=K &e&bxf & p . (3.16)
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Therefore, by (3.14b), (3.16) and interpolation, we have proved (3.9) under
condition (3.10c).

This concludes the proof of the theorem.

To prove the most general case of our inequality we need the following:

Lemma 3.3. Assume 0�k<1&1�p, p>1, g # L p(0, �), d>0. Define

Tkg(x)=
1

x1&k |
x

0
t&kg(t) dt. (3.17)

Then

&xce&dx Tkg&q�K &g& p , (3.18)

where K=K(c, d, k, p, q) only, is true whenever

c<0 and 0<q<
1

1�p&c
, (3.19a)

0�c<
1
p

and 0<q�
1

1�p&c
, (3.19b)

or

c�
1
p

and 0<q��. (3.19c)

Proof. It is well-known that for p>1 (see e.g. [4, p. 245, Eq. (9.9.8)]),

&Tk f & p�K & f & p , 0�k<1&
1
p

. (3.20)

If q<p, let r=p�q, and let r$ be its conjugate exponent. Then

&xce&dx Tkg&q
q�&(xce&dx)q&r$ &(Tk g)q&r

=&(xce&dx)q&r$ &Tk g&q
p�K &g&q

p (3.21)

provided cqr$>&1, or equivalently, c>1�p&1�q. This is true if and
only if c�1�p and q<� or c<1�p and q<1�(1�p&c). If c<0, then
1�(1�p&c)<p, so (3.18) under condition (3.19a) is proved.

From now on we assume c�0. So far in this case we have proved (3.18)
for 0<q<p. Note that by Ho� lder's inequality

Tk g(x)�K &g& p x&1�p. (3.22)
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Therefore, if p�q<�, then

|
�

0
(xce&dx Tk g)q dx=|

�

0
(xce&dx)q (Tk g)q& p (Tk g) p dx

�K &g&q& p
p |

�

0
(xc&1�p+1�qe&dx)q (Tk g) p dx

�K &g&q& p
p &xc&1�p+1�qe&dx&q

� &Tk g& p
p

�K &g&q
p (3.23)

provided c&1�p+1�q�0. This is true provided c�1�p or both c<1�p
and q�1�(1�p&c). This proves (3.18) under condition (3.19b) and most of
(3.19c).

Finally, if q=�, c�1�p, then

&xce&dxTk g&��K &g& p &xc&1�pe&dx&��K &g& p . (3.24)

This concludes the proof of the lemma.

Theorem 3.4. If a, b>0, p>1, m�0, l>1�p&1, x&le&bx f # L p(0, �),
then

|
�

0
|x&(m+l )e&bxfa|q dx�K \|

�

0
|x&le&bx f | p dx+

q�p

, (3.25)

where K=K(a, b, q, p, l, m) only, is true for m=0 if

0<a<
1
p

and p�q�
1

1�p&a
, (3.26a)

a=
1
p

and p�q<�, (3.26b)

or

a>
1
p

and p�q��, (3.26c)

and for m>0 if

0<a<m and
1

1�p+m
<q<

1
1�p+m&a

, (3.27a)

m�a<m+
1
p

and
1

1�p+m
<q�

1
1�p+m&a

, (3.27b)
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or

a�m+
1
p

and
1

1�p+m
<q��. (3.27c)

Furthermore, the norm inequality (3.25) will not generally hold for q outside
the intervals given above.

Proof. We may assume f �0.

Case 1. If l=0, this is Theorems 3.1 and 3.2.

Case 2. If l>0, then

x&(m+l )e&bxfa(x)�x&me&bx(t&l f ): (x), (3.28)

so Case 2 follows from Case 1 applied to x&l f.

Case 3. If 1�p&1<l<0, let g(x)=x&le&bx f (x), k=&l. Observe that

1(a) x&(m+l )e&bxfa(x)

=x&(m+l )e&bx \|
x�2

0
f (t)(x&t)a&1 dt+|

x

x�2
f (t)(x&t)a&1 dt+

�Kx&(m+l)e&bx \ebx�2xa&1 |
x

0
tlg(t) dt+xl |

x

0
t&l f (t)(x&t)a&1 dt+

=K(xa&me&bx�2Tk g(x)+x&me&bx(t&l f )a (x)). (3.29)

Therefore, Case 3 follows from Lemma 3.3 and Case 1.

Example. We first show that the norm inequality (3.25) cannot hold
for q�1�(1�p+m&a), 0<a<m, or for q>1�(1�p+m&a), 0�m�a<
m+1�p, a>0 if m=0.

Let

f (x)=f (=, x)=xl&1�p+=, =>0. (3.30)

Then x&le&bx f # L p(0, �) for all =>0. Therefore, since [2]

fa(x)=
1(l&1�p+=+1)

1(l&1�p+=+a+1)
xl&1�p+=+a (3.31)
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and since 1(l&1�p+=+1)�1(l&1�p+=+a+1) is bounded as = � 0, if the
norm inequality (3.25) holds, then there exists a constant K independent of
= such that

&x&m&1�p+=+ae&bx&q�K &x&1�p+=e&bx& p . (3.32)

If q>1�(1�p+m&a), 0<a<m+1�p, then (a&m&1�p) q<&1, so if
=>0 is sufficiently small the Lq norm in (3.32) will diverge.

If q=1�(1�p+m&a), m>0, 0<a<m, we have to analyze the behavior
of the norms above as = � 0. We can calculate the norms exactly:

&x&m&1�p+a+=e&bx&q=&x&1�q+=e&bx&q=
1

(bq)= (1(q=))1�q, (3.33)

&x&1�p+=e&bx& p=
1

(bp)= (1( p=))1�p. (3.34)

Therefore, since 1(z) has a simple pole at z=0, if (3.32) holds, then

lim sup
= � 0+

=&1�q+1�p<�. (3.35)

This contradicts &1�q+1�p=a&m<0.
We show next that the norm inequality cannot hold for q<p if m=0,

or for q�1�(1�p+m) if m>0. Let

f (x)=f (x, =)=xlebx(x+1)&1�p&=, =>0. (3.36)

Then x&le&bx f # L p(0, �) for all =>0, and we have

1(a) fa(x)

=|
x

0
tlebt(t+1)&1�p&= (x&t)a&1 dt

�(x+1)&1�p&= |
x

0
tlebt(x&t)a&1 dt

=(x+1)&1�p&= xa+l |
1

0
ebxttl (1&t)a&1 dt

=
1(l+1) 1(a)
1(a+l+1)

(x+1)&1�p&= xa+l
1 F1(l+1; a+l+1; bx), (3.37)
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where 1F1 is a confluent hypergeometric function. Above we used the
integral representation ([6], p. 115)

1F1(a; c; z)=
1(c)

1(a) 1(c&a) |
1

0
ezt ta&1(1&t)c&a&1 dt

(3.38)
Re(c)>Re(a)>0.

From the asymptotic formula ([6], p. 128)

1F1(a; c; z)t
1(c)
1(a)

e&zza&c, Re(z) � �, (3.39)

and the fact that 1F1(a; c; x)>0 for all x>0, it follows that there is a
constant C such that

x&le&bx fa(x)�Cx&1�p&=, x�1. (3.40)

Therefore we have

&x&(m+l )e&bxfa&q�C \|
�

1
(x&m&1�p&=)q dx+

1�q

, (3.41)

so if the norm inequality (3.25) holds then we must have

\|
�

1
(x&m&1�p&=)q dx+

1�q

�K &(x+1)&1�p&=& p , (3.42)

with K independent of =.
Observe now that if q<1�(1�p+m), m�0, then (&m&1�p) q>&1.

Therefore if =>0 is sufficiently small, then (&m&1�p&=) q>&1 and the
integral in (3.42) on the left will diverge.

If q=1�(1�p+m), m>0, then we must analyze the behavior of the
norms in (3.42) as = � 0+. Again we can calculate the norms exactly

\|
�

1
(x&m&1�p&=)q dx+

1�q

=\|
�

1
(x&1�q&=)q dx+

1�q

=\ 1
q=+

1�q

, (3.43)

&(x+1)&1�p&=& p=\ 1
p=+

1�p

. (3.44)

Therefore if the norm inequality holds, then

lim sup
= � 0+

=&1�q+1�p<�; (3.45)

this contradicts &1�q+1�p=&m<0.
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Finally, we consider the case a=1�p, m=0, q=�. First note that the
inequality

&x&le&bx fa&��K &x&le&bx f & p (3.46)

for all f such that x&le&bx f # L p(0, �) is equivalent to the inequality

&x&le&bx(tlebtg)a&��K &g& p (3.47)

for all g # Lp(0, �). If we consider only g supported in the interval [1, 2],
(3.47) implies that

|
x

1
g(t)(x&t)&1�p$ dt (3.48)

is a bounded function of x # [1, 2] for all g # L p(1, 2). But this is impossible
by the argument in [3, p. 577].

For applications, we will need the following specialization of Theorem 3.4:

Corollary 3.5. If p>1, x(a&*)�2e&x�2 f (x) # L p(0, �), 0<a<*+2�p$,
1�p+1�p$=1, we have

&x&*�2e&x�2fa&q�K &x(a&*)�2e&x�2f & p , (3.49)

where K=K(a, *, p, q) only, whenever

0<a<
2
p

and
1

1
p

+
a
2

<q�
1

1
p

&
a
2

(3.50a)

or

a�
2
p

and
1

1
p

+
a
2

<q��. (3.50b)

Proof. Take m=a�2, l=(*&a)�2, b=1�2 in Theorem 3.4.

4. APPLICATION TO MEAN CONVERGENCE

Recall that if m is a natural number, and m&1<a<m, then the a th
(fractional) derivative is defined

f (a)(x)=
d m

dxm fm&a(x). (4.1)
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If f has an m th derivative, then its derivative f (m)(x) coincides with
lima � m& f (a)(x). Furthermore, if a�m, then

( f (a))a (x)=f (x). (4.2)

For information on fractional differentiation and integration, see e.g. [7].

Theorem 4.1. Suppose *>max(&1, &2�p$), 1�p+1�p$=1, 4�3<p<4
and 0<a<*+2�p$. Suppose also that x* f has m derivatives if m&1<
a�m, and suppose

x(a&*)�2e&x�2(t* f )(a) (x) # L p(0, �). (4.3)

Then there exist constants c0 , c1 , ... such that

"e&x�2x*�2 \ :
n

k=0

ckL*
k&f +"q

� 0 as n � �, (4.4)

provided that

0<a<
2
p

and
1

1
p

+
a
2

<q�
1

1
p

&
a
2

(4.5a)

or

a�
2
p

and
1

1
p

+
a
2

<q��. (4.5b)

Proof. Let h(x)=xa&*g(x) where g(x)=(t* f )(a) (x). Then x(*&a)�2e&x�2h #
Lp(0, �). Set

Tn(x)= :
n

k=0

bk L*&a
k (x), (4.6)

where

bk=
k !

1(k+*&a+1) |
�

0
h(x) L*&a

k (x) x*&ae&x dx. (4.7)

By the Askey�Wainger theorem,

&x(*&a)�2e&x�2(Tn&h)& p � 0 as n � �. (4.8)
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In other words,

&x(a&*)�2e&x�2(x*&aTn&g)& p � 0 as n � �. (4.9)

Therefore by Corollary 3.5,

&x&*�2e&x�2(x*&aTn&g)a&q � 0 as n � � (4.10)

for all q, a satisfying (4.5a) or (4.5b).
But ga(x)=x* f (x) and

(t*&aTn)a (x)= :
n

k=0

bk
1(*&a+k+1)

1(*+k+1)
x*L*

k(x). (4.11)

Therefore

"x*�2e&x�2 \ :
n

k=0

bk
1(*&a+k+1)

1(*+k+1)
L*

k&f +"q
� 0 as n � �. (4.12)

This finishes the proof.

Remark 4.2. If in the above theorem we have *>&2�q$, where 1�q+
1�q$=1, then the ck in (4.12) coincide with the Laguerre coefficients defined
in (1.9). Denote

T� n(x)= :
n

k=0

bk
1(*&a+k+1)

1(*+k+1)
L*

k(x). (4.13)

Let ak denote the Laguerre coefficients of f. Fix k, and let n�k. Then

ak=
k !

1(k+*+1) |
�

0
f (x) L*

k(x) x*e&x dx

=
k !

1(k+*+1) |
�

0
( f (x)&T� n) L*

k(x) x*e&x dx

+
k !

1(k+*+1) |
�

0
T� n(x) L*

k(x) x*e&x dx

=
k !

1(k+*+1) |
�

0
( f (x)&T� n) L*

k(x) x*e&x dx

+bk
1(*&a+k+1)

1(*+k+1)
. (4.14)

100 E. KOCHNEFF



File: 640J 308918 . By:DS . Date:22:09:97 . Time:07:27 LOP8M. V8.0. Page 01:01
Codes: 2053 Signs: 833 . Length: 45 pic 0 pts, 190 mm

By Ho� lder's inequality, we have

} |
�

0
( f (x)&T� n) L*

k(x) x*e&x dx }
�&x*�2e&x�2( f&T� n)&q &x*�2e&xL*

k&q$ � 0 (4.15)

as n � �. Therefore by (4.14) and (4.15) we obtain

ak=bk
1(*&a+k+1)

1(*+k+1)
. (4.16)

The following example illustrates the theorem:

Example 4.3. Suppose &�1�p$&1�p, 1�p+1�p$=1, *>max(&1, &2�p$),
4�3<p<4. Let f (x)=x&, and define S *

n as in (1.8). Then

&x*�2e&x�2(S *
n&f )&q � 0 as n � � (4.17)

provided one of the following hold:

&
2
p$

<*<2 \ 1
p

&
1
p$+ ,

2
2+*

<q<
2

2(1�p&1�p$)&*
, (4.18a)

*=2 \ 1
p

&
1
p$+ ,

2
2+*

<q<�, (4.18b)

*>2 \ 1
p

&
1
p$+ ,

2
2+*

<q��. (4.18c)

Proof. Let a=*+2�p$&=, where =>0 is sufficiently small so that a>0.
Define

g(x)=g(=, x)=
1(&+*+1)

1(&+*&a+1)
x&+*&a. (4.19)

We have 0<a<*+2�p$ and x(a&*)�2e&x�2g # L p(0, �). Observe that
g(x)=(t* f )(a)(x). Therefore by Theorem 4.1, we have coefficients c0 , c1 , ...,
with

"x*�2e&x�2 \ :
n

k=0

ckL*
k& f +"q

� 0 as n � � (4.20)
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provided one of the following hold:

0<*+
2
p$

&=<
2
p

,
1

*
2

+1&
=
2

<q�
1

1
p

&
1
p$

&
*
2

+
=
2

, (4.21a)

*+
2
p$

&=�
2
p

,
1

*
2

+1&
=
2

<q��. (4.21b)

Letting = � 0 will finish the proof: For example, if * satisfies &2�p$<
*<2(1�p&1�p$), then there exists =*>0 so that if 0<=<=* , then
0<*+2�p$&=<2�p. Therefore (4.17) will hold for

1
*
2

+1&
=
2

<q�
1

1
p

&
1
p$

&
*
2

+
=
2

, 0<=<=* . (4.22)

Now by letting = � 0 we obtain (4.18a).
The other two cases can be argued similarly.
Finally note that if q>2�(2+*), then *>&2�q$, so according to

Remark 4.2 the series in (4.20) is indeed the Laguerre expansion S *
n .
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